
COMS 359: Interactive Media

Agenda

• Review

• Forms

• Preview

• CSS

– margin, border & padding

– CSS layout

Review

Review

• Options for Page Layout

<table> CSS positioning

Review

Review

• Responsive CSS

Forms

• Introduction

• Technical Issues

• Design Issues

Introduction

• Two kinds of Interaction

– Hypertext - User selects what path to follow

through the content

– Forms - User provides information and

receives responses

Introduction

• Forms - Common Usage

– Collect user data

• Credit card numbers

• Mailing address

• Preferences

– Quizzes & Tests

– User feedback

• Evaluation forms

• Surveys

Introduction

• Definitions
– Form: part of an HTML document that permits user

to enter data

• Text fields

• Radio Buttons

• Pull down menus

• Check Boxes

• Text Area

• Local Action Buttons

Introduction

• Definitions

– Common Gateway Interface (CGI)

• Program resident on the server that processes the data
submitted by the user on the form and supplies a response to
the user

• CGI programs: Perl, PHP, ASP

– PERL

• Original Standard for CGI scripting

– ASP & PHP

• Server side scripting languages for creating CGI

• ASP is proprietary (M$); PHP is open source

Introduction

• Emphasis

– Our emphasis will be on
the “front end”

• Design of effective forms

• The inclusion of forms into
web documents

– We will only give brief
consideration to the “back
end”

– Form Processor Script

• PERL, ASP, PHP, C++

• COMS 469 - PHP/MySQL

Technical

• <form>

– Container that holds all the other elements of

the form

– Three attributes (first two are required)

• action

• method

• enctype

– Browsers treat a form like an in-line image;

flow text around the form

Technical

• <form>

– Can use most HTML elements within the

<form> container tag to control layout and

information flow

– Cannot nest Forms; but can have more than one

form on a page

<form> Attributes

• action

– Designates what application will process the

data captured by the form

– Two options (automatic vs. manual data

processing)

• Automatic = send the data to the server and have it

processed by CGI script

• Manual = send the data to your email account for

manual processing

<form> Attributes

• action=“cgi”

– Specify the URL of the application

– Application usually resides on the server and is

written in a language like PERL, PHP, ASP

– <form action=“http://www.niu.edu/cgi-bin/test.php”>

<form> Attributes

• action=“email”

– <form action=“mailto:myemail@niu.edu”>

– Results – strange data string

– Caution

• This approach is only useful for small amounts of

data; it is cumbersome when processing a lot of data

• Data is sent as ASCII text; information will not be

secure

name=Joe+Arada&gender=M&email=jarada@uiuc.edu

<form> Attributes

• method

– Tells the browser how to send the data to the

server

– Two options

• get

• post

<form> Attributes
• method=“get”

– Least complex; creates a long string containing all the

data entered by the user

– name=value pairs; where name is specified by the

form and value is information entered by user

i.e. - variable1=data+for+1&variable2=data+for+2

– spaces are designated by “+”

– “&” separates different variables

– Limitations of get

• get sends all data in a single environmental variable

called QUERY_STRING

• Some machine environmental variables are limited to

256 bytes - long info will be cut off

<form> Attributes

• method=“post”

– Send more information to the server

– Requires decoding of information; more secure

– Generally you will use post

<form> Attributes

• enctype
– Allows designer to specify the encoding format for the

data sent from the form to the CGI script

– Default = application/x-www-form-encoded

– You will probably never need to specify this attribute

<input>

• Tag used to create input fields on the form

– Text fields, multiple-choice lists, submission

and reset buttons, check-boxes, etc.

• Two attributes

– name

– type

<input> Attributes

• name

– Required by every form of input except the

immediate buttons (submission and reset)

– Specifies the name element of the

name=value pair

– Choose descriptive names that assist in

processing the data

<input> Attributes

• type=“text”

– Use to create text entry

fields

– Default field is 20

characters wide and will

scroll data if more than 20

characters are entered

Exercise #1

<input> Attributes

• Extensions of type=“text”

– type=“email”

– type=“url”

– type=“date”

– type=“time”

– type=“month”

– type=“week”

– type=“number”

– type=“tel”

Purpose / Use
• Add semantic data to

form input fields

• Validation of user input

• Support varies across the

different browsers

Exercise #2

Validation Effect

Attributes

• size

– Specify the size of the text entry field

– Size is specified in number of characters

• Default = 20 characters

• <input type=“text” size=“30”>

<input type=“email” size=“70”>

Attributes

• maxlength

– Limits the number of characters the user can

enter

– Rule of thumb: do not make the size larger

than the maxlength; otherwise the user could

become frustrated

Attributes

• value

– Web designer can specify a default setting for

the text field

– If user wants to use this default setting, s/he

does not need to enter text

– If user wants to change the default, s/he simply

enters new data in the field

Attributes

• placeholder

– Similar to value in that it allows the web

designer to fill in the field with some info

– Unlike value, placeholder does not function

as a default value but requires the user to enter

new data in place of the placeholder value

– placeholder is used to show the format of the

information that is expected

Exercise #3

<input>

• type=“password”

– Hides data entry by

substituting dots for

characters

– Server can read the

information but the

data cannot be read off

the browser screen

<type=“checkbox”>

• Allows user to select

items by placing a

check in a box

• User can select one or

more by clicking in the

specified boxes

Exercise #4

<type=“radio”>

• Like checkbox but

only one item in the list

can be selected

• Mutually exclusive list

of options

Exercise #5

<textarea>

• Tag takes the place of the

input tag

• Text input field that is larger

than one line in height

• Size Attributes

– rows: specify vertical size

(number of lines of text)

– cols: specify horizontal size

(number of characters)

<textarea>

• wrap Attribute

– wrap=“virtual”

• Cause text to wrap on users screen

• But only carriage return line feeds will be transmitted

to the server

– wrap=“physical”

• Cause text to wrap on users screen

• And transmits these breaks as carriage returns to the

server

– wrap=“off” turns off wordwrap feature

Exercise #6

<select>

• Container tag

<option> </option>

• Creates a pull down
menu of possible
selections

• Indicate selections by
using <option> tag
inside the <select>
container

<select> Attributes

• name

– Select container must have a name specified

• size

– Indicates how many choices are shown in the pull-down

window

– Default = single entry with a downward scroll arrow

• multiple

– Allows the <select> element to accept multiple inputs

– User selects multiple options by holding down the CTRL

key and clicking

<option>

• Container tag inside the <select> element

• Specify the text that is displayed in the pull-
down window

<option> something </option>

– Attributes

• value – indicates the value sent back to the server

• selected - causes the option it is coded with to be
pre-selected

Exercise #7

Local Action Buttons

• type=“reset”

– Reset the form, changing all fields to original
appearance

– Browser will create a button labeled “reset”

– Button name can be changed by specifying a
VALUE in the INPUT tag

<input type=“reset” value=“Reset”>

Local Action Buttons

• type=“submit”

– Initiates the encoding and sending of data

– Browser will create a button labeled “submit”

– Button name can be changed by specifying a

value in the input tag

<input type=“submit” value=“Submit”>

Exercise #8

<type=“hidden”>

• Hidden input field

• Allows designer to include form

information that is not visible to the user

• Attributes

– name

– value

This hidden input field supplies

information necessary to process

the form.

CGI

• In order to have
automatic processing of
forms, you must have
CGI script on the server

• Source of CGI
– Write your own in Perl,

ASP or PHP

– Have a programmer write
your CGI

– Use versions supplied by
web host

Example of CGI
PHP Scripting Language

MySQL Data Base

COMS 469
Interactive Media Production II

CGI

• What you need to know

– CGI is a way to process
forms automatically

– Can write CGI script to
return dynamically created
pages or pre-selected pages

– “Backend” of e-commerce
or web-based training;
communicates information
between the web site and
databases on the server

CGI

• Use ITS provided CGI to process form data

• mailform.asp

– asp = Automatic Server Pages

– mailform.asp interprets form input and sends the

results to your NIU email in-box

• Limitations

– Can only send results to NIU accounts

z010102@students.niu.edu

– mailform.asp only passes the data to an email

account; it does not process the data

Modify <form>
Set the value of action to the

URL of the ASP script and

use the post method.

Add hidden <input>
Indicate the email address to which the

results should be sent.

You must use an NIU email account:

gdeleuze@niu.edu

z056789@students.niu.edu

Exercise #9

Preview

• CGI for Forms

• Form Validation

• Form Design

