
COMS 469: Interactive Media II

Agenda

• Review

• Functions

• Cookies

Review

• Conditional Expressions

– Making Decisions

– Examples

• if, else, elseif

• switch, break

• while, do while

Review

Basic Version

More Advanced Version

- Form Validation

Review

String Functions

Review

Numeric Functions

Review

• Modify Registration Form

– Validate email address

• Use the ereg() function

• Regular expression from

http://regexlib.com/

– Provide detailed feedback

• Use string functions to format

username and email

• Use rand() function to generate a

random number password

http://regexlib.com/

Review

• Arrays

– Multi-element variables

– Terminology

– Creating Arrays

• array() function

• Assignment Statement

$beer[0] => pabst

Name Key Element

$beer = array(“pabst”, “schlitz”, “blatz”);

$beer[0] = “pabst”;

$beer[1] = “schlitz”;

$beer[2] = “blatz”;

Review

• Looping Methods

– for()

– foreach()

– while()

– do while()

for()

Review

Review

foreach()

Review

while()

Review

do while()

Array Functions

Review

Review

http://gunkelweb.com/coms469/php_shopping_cart/products.html

products.html
Same as the javascript version with

all the javascript code (including

event handlers) removed.

shopping_cart.php

1. Remove all javascript code

2. Initialize variables and use

The number_format() function to

format the dollar amounts so that

there are only 2 decimal places.

3. Use <?php echo … ?>

to display the quanities,

subtotals, and grandTotal

3. Use a hidden input field to pass

the value of the grandTotal to the

next page. If you don’t include this

line, the value of the grandTotal will

not be accessible outside this page.

4. Indicate which fields are required

by including an * after the field
(Hint: Start small and work up):

First Name

Last Name

Credit Card Number

shopping_cart.php
Do not save as .html; save
with the .php extention

http://gunkelweb.com/coms469/exercises/class10_code.pdf

place_order.php
This is a modification of the

user_registration.php

from last class.

Initialize the form variables

$grandTotal

$firstName

$lastName

$cardNumber

Initialize $endingNumber by

applying the substr() method to

the value of $cardNumber.

This extracts the last 4 digits of the

credit card number. We begin the

extraction at the 12th character and

remove 4 digits.

Initialize the value of the $errors

variable to be 0; begin with no

errors.

Conditional statements to check

whether the $firstName and

$lastName variables exist or not.

If they do not exist, then echo an

error statement and increment the

value of $errors by one.

Perform a regular expression match on the

credit card number.

If you use the ereg() method, the regular

expression is ^([0-9]{16})$ which checks

whether there is a 16 digit number, without

hyphens or spaces.

If you use one of the regular expressions provided by regexlib.com,

You will need to use the preg_match(), which is php’s method for

doing a regular expression match in PERL syntax.

if (!preg_match("/ regexpression /",$cardNumber))

Notice that there are slashes "/" after the opening and before

the closing quotation marks. These are required when using

PERL regular expressions.

Conditional Statement: If the value of the $errors

variable is greater than 0, echo the error message.

If not (else), then initialize the value of the

$message, use the mail() function to send the

message to your email, and provide the user with a

receipt by echoing the $message.

Provide the credit card info by appending the

$endingNumber value to the literal xxxx-xxxx-xxxx-

place_order.php

Next Step
This version has many code

redundancies (i.e. variable

initialization and form field

validation). And this only gets

worse, when you try to validate

all form fields. Use arrays and

looping functions to validate

more fields and reduce

redundancy.

place_order.php
Version #2

Create two arrays:

$requiredFields and $errors

Initialize $requiredFields with the

names of required form fields

Initialize Variables

Use foreach() to iterate over the $_POST[] array.

Initialize the variables by concatenating “$” with $key

with “=” and $value. This will produce the initialization

part of the script,

$firstName = value

$lastName = value

$cardNumber = value

Validate Required Form Fields

Conditional statement to check if any of the

required fields are empty.

Use the in_array() method to look through the

$requiredFields array to see if a particular

$key is in the array AND whether the $value

of that $key is empty.

If the condition is true, then assign an error

statement (composed of the $key and “is

required”) to the $errors[] array.

Validate Credit Card Number

Use a regular expression match to validate

$cardNumber. This code is unchanged from

the previous example.

Generate an Error Message

Use a conditional statement. Apply the count()

method to the $errors array to test whether the

number of items in the array is greater than 0.

If it tests true, then use the foreach() method to

iterate over the $errors array and echo the error

statements.

Generate and Display Results Message

If the condition does not test true (meaning no errors), then

execute the else part of the conditional—generate, mail,

and display the $message.

This is the same as the previous example, with one

exception. Here we need to cut-and-paste the initialization

line for the $endingNumber variable.

place_order.php
Version #2

Next Step

• Methods for Reducing Code Redundancy

– Arrays with looping function

– User Defined Functions*

– Object Orient Programming – Classes

Functions

• Two kinds

– PHP built-in Functions

• rand()

• strlen()

• array_slice()

– User Defined Functions

• Customized Function

• Independent, reusable code packages

Functions

• Purpose

– Reduce Code Redundancy

– Reusability – write once, use many times

– Easier to debug

– Code abstraction

Functions

• Terminology

Input Output

Function

arguments Return values

Functions

• Defining a Function

function name(arguments)

{

statements you want to execute

}

function compute_area($height, $width)

{

return $height * $width;

}

Basic

Structure

Example

Functions

• Invoking or Calling a Function

– Both pre-defined and user-defined functions are

called in the same way

• Provide function name

• Provide arguments, if necessary

– Example compute_area(2, 4);

Invoke the compute_area function,

which is passed the arguments 2 and 4.

Functions

• Variables and Scope

– Scope = the range of a variable’s visibility within the

space of a php program

– Two types:

• Global variables – available across entire program

• Local variables – only available inside a function

– With User Defined Functions

• All variables are local by default; this bounding of variables is

deliberate because it maintains program separation

• Change this by using the global keyword inside the function

global $name, $email, $age

Define function called compute_area()

This function takes two arguments: $height and $width

And returns the value of $area as the product of these two values

Example – function definition and invocation

demonstrate scope (global)

demonstrate reusability

Invoke the function by name

Pass the function the values 2 and 4

Echo the value of the $area

Variable Scope: Since $area was defined

inside the function, it is a local variable.

Extend the scope of the variable by

making it global

Reusability: Once the function is

defined, you can call it any number

of times, passing different arguments

Function

• Exercise – Form Validation Redux

Basic Validation
Redundant Conditionals

Validation – version #2
Arrays and Looping Conditionals

Basic Validation
Redundant Conditionals

Validation – version #2
Arrays and Looping Conditionals

Function

• Exercise – Form Validation Redux

Validation – version #3
Form Validation Function

Initialize three variables:

$name, $email and $submit

Define a function called getInputErrors()

Takes two arguments: $key and $errArray

Conditional Statement: if the $key is found in

the $errArray, then return an error statement

made up of string literals and the value of $key

Initialize two new variables:

The array $inputErrors and $submitted,

which is set to the value false

Nested conditional statements.

If the variable $submit is set (this tests whether the

variable $submit exists, meaning the form is submitted),

then set the variable $submitted to true

Note: In previous validation examples, we did tests

with the negative case: if (!$variable) which asks

whether a variable does NOT exist.

Since the variable $submit was already initialized

above, it does exists. So if we want to do a positive

test, we have to use the isset() function.

If the value of $name is empty, then add

‘name’ to the array $inputErrors[]

If the value of $email is empty OR the value

does not match the regular expression, then

add ‘email’ to the array $inputErrors[]

If the value of the variable $submitted is true AND the

number of elements in the $inputErrors array is greater

than 0 OR the value of $submitted is false (meaning the

form has not been submitted yet), then exit the php and

display an html form.

Note: We could construct the form by using an echo statement.

But doing so would require a lot of complicated concatenation.

If we exit the php, we can simply write the form in html.

In the form, the value of each item

is provided by using a php echo

followed by the variable name.

Include a php echo that will

1) call the function and pass two arguments:

a string value and the $inputErrors array

2) and display the error message, if there is one.

Restart php. If the conditional does not test true,

then execute the else part of the statement. Here

we are simply using an echo to display a

message. But this part of the code can also

include the mail() function and other items.

function_form.php

http://gunkelweb.com/coms469/exercises/class10_code.pdf

Cookies

• Topics

– Introduction

– Creating, Accessing & Deleting Cookies

• Exercise

– User Login / Authentication

Cookies

• Introduction

– Cookies = an HTTP facility that lets you store

data on the user’s system

– Cookies and PHP

• The value of a PHP variable only lasts as long as the

program that contains it – limited scope & lifetime

• Cookies are variables whose values can persist over

time and across a number of different pages

• Cookies can be used to store user preferences, form

values, password validation, etc.

Cookies

• Introduction

– Cookies = Client-side data storage

– Some Limitations/Problems

• User can disable cookies

• Under some circumstances, others can view your

cookies

• A site can only store 20 cookies and only 4 KB of

information

Cookies
• Creating a Cookie

– setcookie() function

• setcookie(name, value, expiration)

• Defines cookie name, its value, and expiration date

• Expiration is usually specified by using the time()

function, which returns the elapsed time in seconds

since 1 January 1970.

– Example

• This statement creates a cookie named fruit, which

has the value banana

• The cookie will be available for one hour (3600

seconds) after its creation

setcookie(“fruit”, “banana”, time()+3600);

Cookies

• Accessing Cookies

– The value of a cookie is automatically available

as a PHP variable having the same name as the

cookie

– Access a cookie and its value by providing the

cookies’ name

– Every cookie and its value is contained in the

PHP array $_COOKIE

Echo “The value of the cookie is $fruit”;

foreach ($_COOKIE as $name =>$value)

echo “
$name => $value”;

Cookies

• Deleting a Cookie

– Cookies are automatically deleted at the time

specified by their expiration

– You can also delete a cookie by using the

setcookie function and specifying an

expiration date that is in the past

– This is useful for log-out, when using cookies

for user authentication

setcookie(“fruit”, “”, time() -3600);

Cookies

• Other Cookie Options

– setcookie() takes as many as six arguments

• Path – lets you specify the URL path associated

with the cookie

• Domain – lets you specify the domain name

associated with a cookie

• Secure – integer that specifies whether the cookie

is sent over a secure HTTP connection (1) or not (0)

setcookie(name, value, expiration, path, domain, secure)

Cookies

• Exercise

– User Login

• Create User login page

• Authentication for CMS

– Process (3 files)

• login.html

• authentication.php

• secretstuff.php

login.html authentication.php secretstuff.php

login.html
HTML form, action set to

authentication.php

http://www.gunkelweb.com/coms469/code_pdf/cookies.pdf

authentication.php
Initialize the two variables

Conditional Statement

If the value of username is “admin” and the value

of password is “1234,” then use the setcookie

function to write a cookie, containing the username

and an expiration 1200 seconds from the current

time and

echo an “access approved” message.

If this is condition is not true, then write a

cookie where the username is empty and

the expiration is set 1200 seconds in the

past. And echo an error message.

authentication.php

Use a conditional statement to see whether

the username in the cookie is empty.

If it is empty (meaning that the login failed),

then echo an error message.

If it is not empty, then echo another

message.

secretstuff.php

• Two ways to access and insert other files
into a PHP document
– require “header.inc”

– include “header.inc”

Included files often have the extension .inc but you
can also use other extensions

• Purpose
– Efficiency – it saves time

– Consistency – same info used by numerous pages

– Maintenance – common information held in one file

Included Files

mypage.php

mypage.php

header.inc

footer.inc

Require vs. Include

require is not an executable statement;

include is executable. Consequently,

include provides more options and flexibility.

Preview

• Ch. 6 - Working with Files and Directories

(pp. 159-183)

Preview

• Content Management System – CMS

– Entirely different way to create, manage and deliver
information over the web

– Learning to think in this fashion is the main goal of
working with server-side scripting (i.e. php)

• This is the kind application you should be
producing for your second project

– Project two should be organized around this sort of
content management approach

– Outcome – a flexible, responsive, and dynamic web site
for your client

widgets.php

adminlogin.php

authentication.php

header.inc

adminheader.inc

footer.inc

Preview

• Ch. 6 - Working with Files and Directories

(pp. 159-183)

