
COMS 469: Interactive Media II

Agenda

• Review

• Files and Directories

Review

• User Defined Functions

• Cookies

• File Includes

• CMS Admin Login

Review

• User Defined Functions

Input Output

Function

arguments Return values

Functions

• Defining a Function

• Invoking a Function

• Variable Scope

– local vs. global

function compute_area($height, $width)

{

return $height * $width;

}

compute_area(2, 4);

Invoke the compute_area function,

which is passed the arguments 2 and 4.

Validation – version #3
Form Validation Function

Review

• Cookies

– setcookie() function

• Arguments - name, value, expiration

•

– Reading a Cookie

• Every cookie and its value is contained in the PHP

array $_COOKIE

•

setcookie(“fruit”, “banana”, time()+3600);

foreach ($_COOKIE as $name =>$value)

echo “
$name => $value”;

login.html authentication.php secretstuff.php

Review

Using cookies for

login & authentication

login.html

authentication.php

secretstuff.php

Review

mypage.php Review

File Includes
require “header.inc”

include “header.inc”

mypage.php

header.inc

footer.inc

Require vs. Include

require is not an executable statement;

include is executable. Consequently,

include provides more options and flexibility.

widgets.php

adminlogin.php

authentication.php

header.inc

adminheader.inc

footer.inc

Today

• Objective

– Continue CMS example

– Type of site for project #2

• Topics

– Files and directories

– Content Management

Working with Files & Directories

• File Permissions/Privileges

– Privileges

• Determine what operations different users can

perform on a particular file

• Determine what operations PHP can perform on an

individual file

– UNIX (server OS) allow for three operations

• Read – r

• Write – w

• Execute – x

Working with Files & Directories

• Sequence

– In UNIX, permissions are always specified in
the order r w x

– If a letter is missing from the sequence and
replaced by a hyphen, that means the file in
question does not permit the operation

• rw-

• r-x

• r--

Working with Files & Directories

• Specification

– Permissions are specified as three groups of

three characters – Three triads

• First Triad = Privileges of the file owner

• Second Triad = Privileges of the group

• Third Triad = Privileges of other users

– Example = rwxr-xr--

• Owner of the file can read, write & execute – rwx

• The group can read and execute – r-x

• Other users can read – r--

Working with Files & Directories

• Changing Permissions

– The file owner can change the permissions on a
file; this will be necessary to get PHP to write
to and read from files

– In UNIX you change permissions by using the
chmod command

• Remember the UNIX operating system uses a
command-line interface

• Issue commands at the UNIX prompt instead of
pointing and clicking

Working with Files & Directories

• Changing Permissions

– Each privilege has a numeric value – Octal Digits

• r = 4

• w = 2

• x = 1

– To specify permissions in octal digits you calculate the

sum of each triad

• rwx = 7

• r-x = 5

• r-- = 4

– Example rwxr-xr-- will be octal 754

Working with Files & Directories

• Changing Permissions

– Changing from the UNIX Shell

• Use chmod followed by the privileges in octal digits and

the file name

• i.e. chmod 744 textinfo

– Commercial web hosts usually provide a GUI

permissions feature with their control panel

Working with Files & Directories

• PHP functions

– PHP has a number of functions to access and

manipulate files

– In order for PHP to be able to read, write, or execute a

file, the file must have the proper permissions or

privileges associated with it.

• i.e. If you want users to enter data that is stored in a file,

that file needs to have read and write privileges

• Privileges specify the extent to which PHP is permitted

to manipulate information stored in a file

– Most of the files we will be accessing and using will be

text files, but these functions apply to any kind of file

Working with Files & Directories

• Obtaining a File’s Attributes

– PHP provides several functions that let you

obtain information describing a file

– Some PHP functions to obtain file attributes

– i.e. file_exists($filename)

file_exists() Returns true if file exists

fileattime() Returns file’s access time

filemtime() Returns file’s modify time

fileperms() Returns the file’s permissions

filesize() Returns file size in bytes

is_readable() Returns true if file is readable

is_writeable() Returns true if file is writable

Working with Files & Directories

• Changing File Privileges – chmod()

– chmod() function

• Takes two arguments – filename and mode

• chmod(filename, mode)

• Mode is expressed in octal digits prefixed by a zero

– Example

• chmod(“text.txt”, 0744)

• Changes the permissions on text.txt to rwxr--r--

Working with Files & Directories

• Opening a file – fopen()

– Before you can read or write to a file, you need

to open it

– fopen(filename, mode)

• Example

Opens the file “data.txt” for reading

• Values - fopen() returns a value

– Return false, if PHP was unable to open the file

– Return an integer called a file handle, if PHP was

able to open the file

$fh = fopen(“data.txt”, “r”);

Working with Files & Directories

• Opening a file – fopen()

• Read & write = read from or write to the file

• Create = make the file, if it does not exist

• Truncate = erase the contents of the file

• Pointer = indicates the byte location within the file at
which the next operation (read or write) will occur

Mode Read Write Create Truncate Pointer

“r” x beginning

“r+” x x beginning

“w” x x x beginning

“w+ x x x x beginning

“a” x x end

“a+” x x x end

Working with Files & Directories

• Closing a file

– Close file when you are done with it

– fclose(filehandle)

$fh = fopen(“data.txt”, “r”);

fclose($fh);

Working with Files & Directories
• Verifying Completion of a File Operation

– File operations can fail for a variety of reasons

– Consequently, it’s not a bad idea to verify that
an operation worked

The die() function terminates fopen() function and
prints an error message

$fh = fopen(“data.txt”, “r”);

if (!$fh)

{

die(“Failed to open file data.txt”);

}

$fh = fopen(“data.txt”, “r”);

OR die(“Failed to open file data.txt”);

Working with Files & Directories

• Reading a file

– file_get_contents(filename)

• Reads the entire contents of the file into a string variable

– file(filename)

• Reads the entire contents of the file into an array

• Use a looping statement to extract individual elements

$contents = file_get_contents(“data.txt”) OR die(‘Cannot read file’);

echo $contents;

$contents = file(“data.txt”) OR die(‘Cannot read file’);

$foreach ($contents as $line)

{

echo $line;

}

Working with Files & Directories

• Writing to a File

– fwrite(filehandle, data)

• filehandle = the value returned by fopen()

• data = a string value to be written to the file

– Example

$fh = fopen(“stuff.txt”, “a”);

if (!$fh)

{

die(“Failed to open the file stuff.txt”);

}

$ok = fwrite($fh, “This is good stuff. \n”);

echo “
Results of write: $ok”;

fclose($fh);

Working with Files & Directories

• Writing to a File

– fwrite(filehandle, data)

• filehandle = the value returned by fopen()

• data = a string value to be written to the file

– Example

$fh = fopen(“stuff.txt”, “a”);

if (!$fh)

{

die(“Failed to open the file stuff.txt”);

}

$ok = fwrite($fh, “This is good stuff. \n”);

echo “
Results of write: $ok”;

fclose($fh);

1) In this example,

one line of text

“This is good stuff”

is written to the file

“stuff.txt” by using

the fwrite() function.

Working with Files & Directories

• Writing to a File

– fwrite(filehandle, data)

• filehandle = the value returned by fopen()

• data = a string value to be written to the file

– Example

$fh = fopen(“stuff.txt”, “a”);

if (!$fh)

{

die(“Failed to open the file stuff.txt”);

}

$ok = fwrite($fh, “This is good stuff. \n”);

echo “
Results of write: $ok”;

fclose($fh);

2) Because the file

is opened using

mode “a”, the data

is appended to the

file. That is, the

new data is written

after any existing

data.

Working with Files & Directories

• Writing to a File

– fwrite(filehandle, data)

• filehandle = the value returned by fopen()

• data = a string value to be written to the file

– Example

$fh = fopen(“stuff.txt”, “a”);

if (!$fh)

{

die(“Failed to open the file stuff.txt”);

}

$ok = fwrite($fh, “This is good stuff. \n”);

echo “
Results of write: $ok”;

fclose($fh);

3) The \n at the end of

the text string is a

termination character.

It indicates that the

line is ended. This

allows for PHP to read

the file line by line.

Working with Files & Directories

• Other PHP file functions

– copy(source, destination)

– rename(oldname, newname)

– unlink(filename)

– rewind(filehandle)

– fseek(filehandle, offset)

– ftell(filehandle)

Working with Files & Directories

• PHP also includes functions to access and
manipulate Directories

• Directories are groupings of files (also
called folders).

• Approach

– Manipulating Directories is less common than
manipulating files.

– It is good to know the range of available PHP
functions, but you probably won’t use these in
the short term

Working with Files & Directories

• Get and Change the working Directory

– getcwd() – returns the name of the current directory

– chdir(dirname) – changes the current directory to

dirname

• Manipulating paths

– dirname(path) – takes the path to a specified file and

returns all but the file name

– basename(path) – takes the path to a specified file

and returns the file name

– pathinfo() – returns an array that includes three

elements: dirname, basename, and file extension

Working with Files & Directories

• Reading Directory Contents

– opendir() – makes dir. available for reading

– readdir() – reads a directory entry

– closedir() – closes a directory

• Creating & Removing (deleting) Directories

– mkdir(dirname, mode)

– rmdir(dirname)

Application

• We now know enough about PHP to create

an actual application

• Content Management Site

– A web site that permits easy update of

information without having to re-write HTML

– Basic Elements

• Administrator access that permits the writing of new

information to files

• User access to dynamically generated content

http://gunkelweb.com/coms469/php_examples/cms_version1/widgets.php

Application

• Structure

– Administrator side

• Page Login to protect administrator pages

• writeinfo() & handleform() functions to

update the individual files that contain content

• adminheader.inc to create admin page layout

– User side

• readinfo() function to extract data from files

• header.inc & footer.inc to control page layout

header.inc

footer.inc

news.txt
news.php

http://www.gunkelweb.com/coms469/php_examples/cms_version1/widgets.php

Content Management

• Entirely different way to create, manage and
deliver information over the web

– Learning to think in this fashion is the main goal of
working with PHP

– PHP commands are relatively easy to learn and use.
The real skill comes in using these commands to
construct complex and dynamic web sites

• This is the kind application you should be
producing for your second project

– Project two should be organized around this sort of
content management approach

– Outcome – a flexible, responsive, and dynamic web site
for your client

news.txt

news.php

Include the header.inc

Define a function readinfo() which will extract the information

stored in the file news.txt

Open a connection to the file by assigning the value of the

fopen() function to the variable $open.

The fopen() function takes two arguments, the filename and “r”

which indicates the mode read and uses the pointer beginning.

Use a conditional statement to test whether the file was

successfully opened.

If the file was opened, then echo a heading and a

horizontal rule <hr>

Apply the file() function to the file news.txt and to assign

the results to the variable $data. The function file()

automatically creates a array, so $data will be an array

variable.

The for statement loops through the information stored in the $data array and

writes this information into a new array called $getline.

Within the loop, use the explode() function to create the individual $getline

elements from the $data array by separating out the two components based

upon the location of the tab. Using this new array variable, you can then echo

each element separately - $getline[0] and $getline[1]

End the first part of the conditional by closing the file with the

fclose() function.

If the file did not open, echo

an error message.

Call the function readinfo()

and include the footer.

news.php

addnews.php

Check for authentication.

If the username element of the COOKIE

super-global array is empty (meaning that the

user did not login as administrator), then echo

an access denied message and return false so

that you exist the script.

If the user did a successful authentication, then

the username is not empty and this part of the

script does nothing.

Initialize the array variable called $array

Include the adminheader.inc file

echo a heading for the page

Define a function called writeinfo() which

will take two arguments $date and $news

Open a connection to the file by using the

fopen() function and assign the results to

$open (which is an array variable)

Use a conditional statement to test whether

the file was successfully opened.

If the file was opened, then use the fwrite()

function to write data to the file. This

function takes two arguments, filehandle

and data. The filehandle is $open. The

data is a string composed of the values of

$data and $news. The \t is the horizontal

tab character and the \n is an end of line

character.

Close the file by using the fclose()

function and assign the value TRUE to the

variable $worked.

If the file did not open, then set the variable

$worked to FALSE.

After the conditional statement, return the

value of the variable $worked.

Include another conditional statement to call the function writeinfo()

If there is a date element in the $array, then call the function

writeinfo(), pass it the values of $array[“date”] and $array[“news”],

and assign the result to the $callfunction variable.

Use conditional statement to provide messages.

If the variable $callfunction is true, then echo a message that

indicate that the information has been received.

If the variable $callfunction is not true, then echo an error message.

If there is not a date element in the $array,

then echo “Enter a news item.”

HTML form. The form’s action should be set to

addnews.php, which means the form processes itself.

The form has one type=text input for the Date and one

textarea for the News. The name of the first input field is

array[date]; the name of the second is array[news].

Include the footer.inc file

addnews.php

Content Management

• Upload all 9 files to the server

– widgets.php

– adminlogin.php

– authentication.php

– news.php

– addnews.php

– header.inc

– adminheader.inc

– footer.inc

– news.txt

widgets.php

Preview

• PHP & MySQL

• Read

– Ch. 7 - Working with Databases and SQL

(pp. 185-247)

– Ch. 9 - Working with Cookies, Sessions and

Headers (pp. 301-313)

